Section 5.8

Definitions of Hyperbolic Functions

$$
\begin{array}{ll}
\sinh x=\frac{e^{x}-e^{-x}}{2} & \operatorname{csch} x=\frac{1}{\sinh x}, \quad x \neq 0 \\
\cosh x=\frac{e^{x}+e^{-x}}{2} & \operatorname{sech} x=\frac{1}{\cosh x} \\
\tanh x=\frac{\sinh x}{\cosh x} & \operatorname{coth} x=\frac{1}{\tanh x}, \quad x \neq 0
\end{array}
$$

Hyperbolic Identities

$$
\begin{gathered}
\cosh ^{2} x-\sinh ^{2} x=1 \\
2 \sinh x \cosh x=\sinh 2 x \\
\cosh ^{2} x+\sinh ^{2} x=\cosh 2 x \\
\tanh ^{2} x+\operatorname{sech}^{2} x=1 \\
\operatorname{coth}^{2} x-\operatorname{csch}^{2} x=1
\end{gathered}
$$

1) Find the derivatives of the following hyperbolic functions.
a) $y=\cosh \left(3 x^{2}-2 x\right)$
b) $y=\operatorname{csch}^{2}(\sqrt{x})$
2) Find the indefinite integrals.
a) $\int \tanh ^{2}(3 x) \operatorname{sech}^{2}(3 x) d x$
b) $\int e^{x} \operatorname{csch}^{2}\left(e^{x}\right) d x$
3) Find the following:
a) $\frac{d}{d x}\left[\cosh ^{-1}\left(x^{2}\right)\right]$
b) $\int \frac{d x}{\sqrt{(x+2)^{2}-9}}$
